Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of chi2-type tests for independence between pairs of failure times after adjusting for covariates. A bivariate accelerated failure time model is proposed for the joint distribution of bivariate failure times while leaving the dependence structures for related failure times completely unspecified. Theoretical properties of the proposed tests are derived and variance estimates of the test statistics are obtained using a resampling technique. Simulation studies show that the proposed tests are appropriate for practical use. Two examples including the study of infection in catheters for patients on dialysis and the diabetic retinopathy study are also given to illustrate the methodology.