Crystal-state 3D-structural characterization of novel, Aib-based, turn and helical peptides

J Pept Sci. 2007 Mar;13(3):190-205. doi: 10.1002/psc.833.

Abstract

The crystal-state conformations of the hexapeptide amide Pht-(Aib)(6)-NH-C(CH(3))(2)-O-OtBu (7), the hexapeptide Ac-L-aIle-(Aib)(5)-OtBu (6), the pentapeptide Z-(Aib)(3)-L-Glu(OtBu)-Aib-O-(CH(2))(2)-(1)Nap (5), the tetrapeptides Z-(Aib)(2)-L-His(N(tau)-Trt)-Aib-OMe (4 I) and Z-(Aib)(2)-L-Nva-Aib-OtBu (4 II), the tripeptide Pyr-(Aib)(3)-OtBu (3 I), the dipeptide amides Pyr-(Aib)(2)-(4)NH-TEMPO (3 II) and Piv-(Aib)(2)-NH-C(CH(3))(2)-O-OtBu (3 III), and the dipeptides Pht-Aib-betaAc(6)c-OtBu (2 I), Pht-Aib-NH-C(CH(3))(2)-O-OtBu (2 II) and Boc-gGly-mAib-OH (2 III) have been determined by X-ray diffraction analyses. All peptides investigated are characterized by one or more turn/helix forming Aib residues. Except the three short dipeptides, all are folded into C==O...H--N intramolecularly H-bonded 3(10)-helices, or into various types of beta-turns. In the structure of 6, two independent molecules of opposite screw sense were observed in the asymmetric unit, generating diastereomeric 3(10)-helices.

MeSH terms

  • Aminoisobutyric Acids / chemistry*
  • Crystallization
  • Crystallography, X-Ray
  • Hydrogen Bonding
  • Oligopeptides / chemistry*

Substances

  • Aminoisobutyric Acids
  • Oligopeptides