Study design: Longitudinal intervention case series.
Objective: To determine if a 12-week resistance and plyometric training program results in improved muscle function and locomotor speed after incomplete spinal cord injury (SCI).
Setting: University research setting.
Methods: Three ambulatory individuals with chronic (18.7+/-2.2 months post injury) motor incomplete SCI completed 12 weeks of lower extremity resistance training combined with plyometric training (RPT). Muscle maximum cross-sectional area (max-CSA) of the knee extensor (KE) and plantar flexor (PF) muscle groups was determined using magnetic resonance imaging (MRI). In addition, peak isometric torque, time to peak torque (T (20-80)), torque developed within the initial 220 ms of contraction (torque(220)) and average rate of torque development (ARTD) were calculated as indices of muscle function. Maximal as well as self-selected gait speeds were determined pre- and post-RPT during which the spatio-temporal characteristics, kinematics and kinetics of gait were measured.
Results: RPT resulted in improved peak torque production in the KE (28.9+/-4.4%) and PF (35.0+/-9.1%) muscle groups, as well as a decrease in T(20-80), an increased torque(220) and an increase ARTD in both muscle groups. In addition, an increase in self-selected (pre-RPT=0.77 m/s; post-RPT=1.03 m/s) and maximum (pre-RPT=1.08 m/s; post-RPT=1.47 m/s) gait speed was realized. Increased gait speeds were accompanied by bilateral increases in propulsion and hip excursion as well as increased lower extremity joint powers.
Conclusions: The combination of lower extremity RPT can attenuate existing neuromuscular impairments and improve gait speed in persons after incomplete SCI.