The intrasplenic injection of human peripheral blood mononuclear cells (PBMCs) into severely immune deficient NOD/SCID mice, causes a massive and transient dominant expansion of human B cells in the spleen. This permits the easy isolation of human monoclonal antibodies specific for different antigens by a Kohler and Milstein-based method. Here we studied the human HIV-specific antibody response in the circulation of mice after intrasplenic transfer of PBMC from untreated HIV-infected patients with detectable to high viral load as well as from HAART-treated and from untreated patients, who kept an undetectable viral load (the latter referred to as "natural suppressors"). Excellent B cell expansion was obtained for all PBMC. High level replication of virus was observed after transfer of PBMC of untreated viremic patients only. A strong and multispecific HIV-specific antibody response was observed after transfer of PBMC of untreated viremic patients and natural suppressors. In contrast, only a weak and pauci-specific antibody response was detected in mice reconstituted with PBMC from successfully treated patients. Based on these observations we conclude that the use of the intraspleen mouse model confirmed a) the presence of HIV-specific circulating memory B cells in untreated patients and natural suppressors; b) the nearly complete absence of circulating memory B cells in patients receiving highly active antiretroviral therapy. Using the intraspleen model we generated large numbers of immortalized B cells and isolated two anti-p24 human monoclonal antibodies. We further conclude that the intraspleen huPBL NOD/SCID model is a small animal model useful for the analysis of the antibody response against HIV found in patients.