Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance

Langmuir. 2007 Mar 13;23(6):3095-102. doi: 10.1021/la062616t. Epub 2007 Feb 1.

Abstract

The dynamic adsorption/desorption behavior of volatile organic compounds (VOCs) such as toluene (C7H8) and benzene (C6H6) was evaluated for three kinds of mesoporous silicas of SBA-15, all having almost the same mesopore size of ca. 5.7 nm, and a MCM-41 silica with a smaller pore size of 2.1 nm using a continuous three-step test. The fiberlike SBA-15 silica exhibited exceptionally good breakthrough behavior, a higher VOC capacity, and easier desorption. The fiberlike silica was composed through the catenation of rodlike particles. The rodlike silicas, by comparison, were proven to be less useful in dynamic adsorption processes because of lower dynamic VOC capacities despite having comparative porous parameters with the fiberlike silica. The large dynamic VOC capacity of the fiberlike silica was attributed to the presence of a bimodal pore system consisting of longer, one-dimensional mesopore channels connected by complementary micropores.