MiniReview: bioinformatic study of bile responses in Campylobacterales

FEMS Immunol Med Microbiol. 2007 Feb;49(1):101-23. doi: 10.1111/j.1574-695X.2006.00194.x.

Abstract

Campylobacter, Helicobacter and Wolinella are genera of the order Campylobacterales, belonging to the class Epsilonproteobacteria. Their habitats are various niches in the gastrointestinal tract of higher animals, where they may come into contact with bile. Microorganisms in these environments require mechanisms of resistance to the surface-active amphipathic molecules with potent antimicrobial activities present in bile. This review summarizes current knowledge on the molecular responses to bile by Campylobacterales and other bacterial species that inhabit the intestinal tract and belong to the phyla Proteobacteria, Bacteriodetes, Firmicutes and Actinobacteria. To date, 125 specific genes have been implicated in bile responses, of which 10 are found in Campylobacterales. Genome database searches, analyses of protein sequence and domain similarities, and gene ontology data integration were performed to compare the responses to bile of these bacteria. The results showed that 33 proteins of bacteria belonging to the four phyla had similarities equal to or greater than 50-46% proteins of Campylobacterales. Domain architecture analyses revealed that 151 Campylobacterales proteins had similar domain composition and organization to 60 proteins known to participate in the tolerance to bile in other bacteria. The proteins CmeB, CmeF and CbrR of Campylobacter jejuni involved in bile tolerance were homologous to 42 proteins identified in the Proteobacteria, Bacteriodetes and Firmicutes. On the other hand, the proteins CiaB, CmeA, CmeC, CmeD, CmeE and FlaAsigma(28) also involved in the response to bile of C. jejuni, did not have homologues in other bacteria. Among the bacteria inhabiting the gastrointestinal tract, the Campylobacterales seem to have evolved some mechanisms of bile resistance similar to those of other bacteria, as well as other mechanisms that appear to be characteristic of this order.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Bile / physiology*
  • Computational Biology
  • Epsilonproteobacteria / physiology*
  • Humans