Influence of the polyelectrolyte molecular weight on exponentially growing multilayer films in the linear regime

Langmuir. 2007 Feb 13;23(4):1898-904. doi: 10.1021/la062728k. Epub 2007 Jan 3.

Abstract

Alternated deposition of polyanions and polycations on a charged solid substrate leads to the buildup of polyelectrolyte multilayer (PEM) films. Two types of PEM films were reported in the literature: films whose thickness increases linearly and films whose thickness increases exponentially with the number of deposition steps. However, it was recently found that, for exponentially growing films, the exponential increase of the film thickness takes place only during the initially deposited pairs of layers and is then followed by a linear increase. In this study, we investigate the growth process of hyaluronic acid/poly(L-lysine) (HA/PLL) and poly(L-glutamic acid)/poly(allylamine) (PGA/PAH) films, two films whose growth is initially exponential, when the growth process enters the linear regime. We focus, in particular, on the influence of the molecular weight (Mw) of the polyelectrolytes. For both systems, we find that the film thickness increment per polyanion/polycation deposition step in the linear growth regime is fairly independent of the molecular weights of the polyelectrolytes. We also find that when the (HA/PLL)n films are constructed with low molecular weight PLL, these chains can diffuse into the entire film during each buildup cycle, even for very thick films, whereas the PLL diffusion of high molecular weight chains is restricted to the upper part of the film. Our results lead to refinement of the buildup mechanism model, introduced previously for the exponentially growing films, which is based on the existence of three zones over the entire film thickness. The mechanism no longer needs all the "in" and "out" diffusing polyanions or polycations to be involved in the buildup process to explain the linear growth regime but merely relies on the interaction between the polyelectrolytes with an upper zone of the film. This zone is constituted of polyanion/polycation complexes which are "loosely bound" and rich in the polyelectrolyte deposited during the former deposition step.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrolytes / chemistry*
  • Hyaluronic Acid / chemistry*
  • Molecular Weight
  • Polylysine / chemistry*
  • Solutions

Substances

  • Electrolytes
  • Solutions
  • Polylysine
  • Hyaluronic Acid