Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power

Ann Biomed Eng. 2007 Apr;35(4):631-41. doi: 10.1007/s10439-007-9261-6. Epub 2007 Feb 13.

Abstract

A totally implantable piezoelectric generator system able to harness power from electrically activated muscle would augment the power systems of implanted functional electrical stimulation devices by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The generator design contains no moving parts and uses a portion of the generated power for system operation. A software model of the system was developed and simulations performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces were experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to 690 microW of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 46 microW. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and warrants further investigation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bioelectric Energy Sources*
  • Computer Simulation*
  • Models, Biological*
  • Muscle Contraction*
  • Muscle, Skeletal*
  • Software*