Chromophore-protein interactions and the function of the photosynthetic reaction center: a molecular dynamics study

Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):75-9. doi: 10.1073/pnas.89.1.75.

Abstract

The coupling between electron transfer and protein structure and dynamics in the photosynthetic reaction center of Rhodopseudomonas viridis is investigated. For this purpose molecular dynamics simulations of the essential portions (a segment of 5797 atoms) of this protein complex have been carried out. Electron transfer in the primary event is modeled by altering the charge distributions of the chromophores according to quantum chemical calculations. The simulations show (i) that fluctuations of the protein matrix, which are coupled electrostatically to electron transfer, play an important role in controlling the electron transfer rates and (ii) that the protein matrix stabilizes the separated electron pair state through rapid (200 fs) and temperature-independent dielectric relaxation. The photosynthetic reaction center resembles a polar liquid in that the internal motions of the whole protein complex, rather than only those of specific side groups, contribute to i and ii. The solvent reorganization energy is about 4.5 kcal/mol. The simulations indicate that rather small structural rearrangements and changes in motional amplitudes accompany the primary electron transfer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacterial Chromatophores / chemistry*
  • Electron Transport
  • Macromolecular Substances
  • Models, Molecular
  • Motion
  • Oxidation-Reduction
  • Photosynthesis
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Protein Conformation
  • Rhodopseudomonas
  • Thermodynamics

Substances

  • Macromolecular Substances
  • Photosynthetic Reaction Center Complex Proteins