Expression of a truncated cystic fibrosis transmembrane conductance regulator with an AAV5-pseudotyped vector in primates

Mol Ther. 2007 Apr;15(4):756-63. doi: 10.1038/sj.mt.6300059. Epub 2007 Feb 13.

Abstract

Gene therapy using recombinant adeno-associated virus (rAAV2) vectors for cystic fibrosis has shown gene transfer and remarkable safety, yet indeterminate expression. A new construct has been characterized with a powerful exogenous promoter, the cytomegalovirus enhancer/chicken beta-actin promoter, driving a truncated CF transmembrane conductance regulator (CFTR), pseudotyped in an AAV5 viral coat. Our goal is to demonstrate that airway delivery of a pseudotyped rAAV5 vector results in gene transfer as well as expression in non-human primates. Aerosolized pseudotyped rAAV5-DeltaCFTR or rAAV5-GFP (green fluorescent protein) genes were delivered to four and six lungs, respectively. The pseudotyped rAAV5 vector did result in GFP gene transfer (1.005x10(6) copies/mug DNA on average) and quantifiable gene expression. Microscopy confirmed protein expression in airway epithelium. Similarly, the vector also resulted in vector-specific CFTR DNA (1.24x10(5) copies/microg) and mRNA expression. Immunoprecipitation and (32)P phosphoimaging were used to demonstrate CFTR protein expression, as qualitatively enhanced beyond the barely detectable endogenous expression in untreated animals. Based on these promising studies, this CFTR minigene construct is a therapeutic candidate.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Base Sequence
  • Cystic Fibrosis / genetics
  • Cystic Fibrosis / therapy
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics*
  • DNA Primers / genetics
  • Dependovirus / classification
  • Dependovirus / genetics*
  • Gene Expression
  • Genetic Therapy / methods
  • Genetic Vectors*
  • Green Fluorescent Proteins / genetics
  • Macaca mulatta
  • Peptide Fragments / genetics
  • Recombinant Proteins / genetics
  • Transfection

Substances

  • DNA Primers
  • Peptide Fragments
  • Recombinant Proteins
  • Cystic Fibrosis Transmembrane Conductance Regulator
  • Green Fluorescent Proteins