Since Berry and Friend developed methods to isolate hepatocytes from the liver by a collagenase digestion technique in 1969, studies in laboratory animals have demonstrated that hepatocyte transplantation could potentially be used for the treatment of liver failure and inborn errors of liver-based metabolism. Healthy human hepatocytes are an ideal source for hepatocyte transplantation; however, their relative scarcity is one of the major drawbacks, further compounded by the competing demands of liver transplantation. Notably, most of the hepatocytes are isolated from discarded livers that are not suitable for organ transplantation for a variety of reasons, including excessive fat content. Importantly, the hepatocyte isolation procedure itself exerts major stress on hepatocytes by the disruption of cell-to-cell and cell-to-matrix contacts, resulting in hepatocytic apoptosis. Prevention of apoptosis would maximize yield of healthy cells and maintain hepatocyte differentiated function in culture. In this review, we describe methods to prevent apoptosis by utilizing both antiapoptotic molecules and matrices. We also introduce a new type of liver tissue engineering, hepatocyte sheet transplantation, which utilizes unwoven cloth having a cellular adhesive property.