The rate of ribosomal (r)-protein synthesis in the early Drosophila embryo is low despite the presence of abundant, maternally supplied r-protein mRNAs. This low rate is due to specific repression of r-protein mRNA translation. In contrast to r-protein mRNAs, most other mRNAs are efficiently translated in the early embryo. Here we report on the identification of cis-acting sequences that mediate translational repression of the r-protein A1 (rpA1) mRNA. Chimeric genes containing sequences from the translationally regulated rpA1 mRNA fused to the constitutively translated alpha-tubulin mRNA were constructed and transformed into the Drosophila germ line. Translation of the corresponding hybrid mRNAs was measured in ovaries and embryos of the transgenic flies. The results indicated that a 89-nucleotide sequence in the untranslated rpA1 mRNA leader is by itself sufficient to confer full translational regulation to a heterologous mRNA.