We report results of a megabase-scale phylogenomic analysis of the Reptilia, the sister group of mammals. Large-scale end-sequence scanning of genomic clones of a turtle, alligator, and lizard reveals diverse, mammal-like landscapes of retroelements and simple sequence repeats (SSRs) not found in the chicken. Several global genomic traits, including distinctive phylogenetic lineages of CR1-like long interspersed elements (LINEs) and a paucity of A-T rich SSRs, characterize turtles and archosaur genomes, whereas higher frequencies of tandem repeats and a lower global GC content reveal mammal-like features in Anolis. Nonavian reptile genomes also possess a high frequency of diverse and novel 50-bp unit tandem duplications not found in chicken or mammals. The frequency distributions of approximately 65,000 8-mer oligonucleotides suggest that rates of DNA-word frequency change are an order of magnitude slower in reptiles than in mammals. These results suggest a diverse array of interspersed and SSRs in the common ancestor of amniotes and a genomic conservatism and gradual loss of retroelements in reptiles that culminated in the minimalist chicken genome. The sequences reported in this paper have been deposited in the GenBank database (accession nos. CZ 250707-CZ 257443 and DX 390731-DX 389174).