The in vitro and in vivo metabolism of RWJ-53050, an anxiolytic agent, was investigated after incubation with rat and human hepatic S9 fractions, and human microsomes and 7 microsomes containing individual human CYP isoforms, CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 in the presence of NADPH-generating system, and a single oral dose administration to dogs (30 mg/kg). Unchanged RWJ-53050 (> or = 74% of the sample in vitro; < or = 13% in vivo) plus 16 metabolites were profiled, quantified and tentatively identified based on the API-MS and MS/MS data. The formation of RWJ-53050 metabolites are via the 5 pathways: 1. N/O-demethylation, 2. phenylhydroxylation, 3. pyrido-oxidation, 4. dehydration, and 5. conjugation. Pathway 1 formed O-desmethyl-phenyl-RWJ-53050 (M1, < 1-12% in vitro & in vivo), O-desmethyl-benzimidazole-RWJ-53050 (M2), and N-desmethyl-RWJ-53050 (M3) (M2 & M3, < or = 3% in vitro & in vivo). Pathway 2 generated hydroxy-benzimidazole-RWJ-53050 (M4), hydroxy-phenyl-RWJ-53050 (M5), and hydroxy-phenyl-M4 (M9) (< or = 3% in vitro & in vivo). Pathway 3 formed 2 trace oxidized metabolites, hydroxy-pyrido-RWJ-53050 (M6, < or = 1% in vitro) and oxo-pyrido-RWJ-53050 (M8, < 1% in vitro) and in conjunction with pathway 1 produced 2 trace dioxidized metabolites, OH-benzimidazole-M6 (M10) and OH-benzimidazole-M8 (M11) (in vitro). Pathway 4 formed a minor dehydrated metabolite of M6 (M7, 3%, in vitro). Pathway 5 produced 3 in vivo conjugates, M1-glucuronide (M14, 17%), M5-glucuronide (M15, 50%), and M5-sulfate (M16, 10%). RWJ-53050 is substantially metabolized in vitro in the rat and human, and extensively metabolized in vivo in the dog. CYP1A2, CYP3A4 and CYP2D6 are responsible for the formation of oxidized metabolites, M1, M2, M4, M5 and M9.