Background: Abnormalities in Human Leukocyte Antigen (HLA) class I expression are common in colorectal cancer. Since HLA expression is required to activate tumor antigen-specific cytotoxic T-lymphocytes (CTL), HLA class I abnormalities represent a mechanism by which tumors circumvent immune surveillance. Tumors with high microsatellite instability (MSI-H) are believed to face strong selective pressure to evade CTL activity since they produce large amounts of immunogenic peptides. Previous studies identified the prevalence of HLA class I alterations in MSI-H tumors. However, those reports did not compare the frequency of alterations between hereditary and sporadic MSI-H tumors neither the mechanisms that led to HLA class I alterations in each subgroup.
Methods: To characterize the HLA class I expression among sporadic MSI-H and microsatellite-stable (MSS) tumors, and HNPCC tumors we compared immunohistochemically the expression of HLA class I, beta2-microglobulin (beta2m), and Antigen Processing Machinery (APM) components in 81 right-sided sporadic and 75 HNPCC tumors. Moreover, we investigated the genetic basis for these changes.
Results: HLA class I loss was seen more frequently in MSI-H tumors than in MSS tumors (p < 0.0001). Distinct mechanisms were responsible for HLA class I loss in HNPCC and sporadic MSI-H tumors. Loss of HLA class I expression was associated with beta2m loss in HNPCC tumors, but was correlated with APM component defects in sporadic MSI-H tumors (p < 0.0001). In about half of the cases, loss of expression of HLA class I was concordant with the detection of one or more mutations in the beta2m and APM components genes.
Conclusion: HLA class I aberrations are found at varying frequencies in different colorectal tumor types and are caused by distinct genetic mechanisms. Chiefly, sporadic and hereditary MSI-H tumors follow different routes toward HLA class I loss of expression supporting the idea that these tumors follow different evolutionary pathways in tumorigenesis. The resulting variation in immune escape mechanisms may have repercussions in tumor progression and behavior.