Two streams of attention-dependent beta activity in the striate recipient zone of cat's lateral posterior-pulvinar complex

J Neurosci. 2007 Feb 28;27(9):2230-40. doi: 10.1523/JNEUROSCI.4004-06.2007.

Abstract

Local field potentials from different visual cortical areas and subdivisions of the cat's lateral posterior-pulvinar complex of the thalamus (LP-P) were recorded during a behavioral task based on delayed spatial discrimination of visual or auditory stimuli. During visual but not auditory attentive tasks, we observed an increase of beta activity (12-25 Hz) as calculated from signals recorded from the caudal part of the lateral zone of the LP-P (LPl-c) as well as from cortical areas 17 and 18 and the complex located at the middle suprasylvian sulcus (MSS). This beta activity appeared only in the trials that ended with a successful response, proving its relationship to the mechanism of visual attention. In contrast, no enhanced beta activity was observed in the rostral part of the lateral zone of the LP-P and in the pulvinar proper. Two subregions of LPl-c (ventromedial and dorsolateral) were distinguished by visually related, attentional beta activity of low (12-18 Hz) and high (18-25 Hz) frequencies, respectively. At the same time, area 17 exhibited attentional activation in the whole beta range, and an increase of power in low-frequency beta was observed in the medial bank of MSS, whereas cortical area 18 and the lateral bank of the MSS were activated in the high beta range. Phase-correlation analysis revealed that two distinct corticothalamic systems were synchronized by the beta activity of different frequencies. One comprised of cortical area 17, ventromedial region of LPl-c, and medial MSS, the second involved area 18 and the dorsolateral LPl-c. Our observations suggest that LPl-c belongs to the wide corticothalamic attentional system, which is functionally segregated by distinct streams of beta activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Attention / physiology*
  • Beta Rhythm*
  • Cats
  • Cues
  • Male
  • Visual Cortex / physiology*