Probing the local coordination environment for transition metal dopants in zinc oxide nanowires

Nano Lett. 2007 Apr;7(4):905-9. doi: 10.1021/nl0626939. Epub 2007 Mar 3.

Abstract

It is hypothesized that a highly ordered, relatively defect-free dilute magnetic semiconductor system should act as a weak ferromagnet. Transition-metal-doped ZnO nanowires, being single crystalline, single domain, and single phase, are used here as a model system for probing the local dopant coordination environments using X-ray absorption spectroscopy and diffraction. Our X-ray spectroscopic data clearly show that the dopant resides in a uniform environment, and that the doping does not induce a large degree of disorder in the nanowires. This homogeneous nature of the doping inside the oxide matrix correlates well with observed weakly ferromagnetic behavior of the nanowires.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anisotropy
  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Magnetics*
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Surface Properties
  • Transition Elements / chemistry*
  • Zinc Oxide / chemistry*

Substances

  • Macromolecular Substances
  • Transition Elements
  • Zinc Oxide