Description of light ion production cross sections and fluxes on the Mars surface using the QMSFRG model

Radiat Environ Biophys. 2007 Jun;46(2):101-6. doi: 10.1007/s00411-007-0099-y. Epub 2007 Mar 7.

Abstract

The atmosphere of Mars significantly attenuates the heavy ion component of the primary galactic cosmic rays (GCR), however, increases the fluence of secondary light ions (neutrons, and hydrogen and helium isotopes) because of particle production processes. We describe results of the quantum multiple scattering fragmentation (QMSFRG) model for the production of light nuclei through the distinct mechanisms of nuclear abrasion and ablation, coalescence, and cluster knockout. The QMSFRG model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. We use the QMSFRG model and the space radiation transport code, HZETRN to make predictions of the light particle environment on the Martian surface at solar minimum and near maximum. The radiation assessment detector (RAD) experiment will be launched in 2009 as part of the Mars Science Laboratory (MSL). We make predictions of the expected results for time dependent count-rates to be observed by the RAD experiment. Finally, we consider sensitivity assessments of the impact of the Martian atmospheric composition on particle fluxes at the surface.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Cosmic Radiation*
  • Environmental Exposure / analysis*
  • Extraterrestrial Environment*
  • Ions
  • Mars*
  • Models, Theoretical*
  • Radiation Dosage
  • Radiation Monitoring / methods*
  • Risk Assessment / methods
  • Risk Factors
  • Space Flight / methods*

Substances

  • Ions