Data sharing in autism neuroimaging presents scientific, technical, and social obstacles. We outline the desiderata for a data-sharing scheme that combines imaging with other measures of phenotype and with genetics, defines requirements for comparability of derived data and recommendations for raw data, outlines a core protocol including multispectral structural and diffusion-tensor imaging and optional extensions, provides for the collection of prospective, confound-free normative data, and extends sharing and collaborative development not only to data but to the analytical tools and methods applied to these data. A theme in these requirements is the need to preserve creative approaches and risk-taking within individual laboratories at the same time as common standards are provided for these laboratories to build on.