We present a method for the 3-D shape reconstruction of the retinal fundus from stereo paired images. Detection of retinal elevation plays a critical role in the diagnosis and management of many retinal diseases. However, since the shape of ocular fundus is nearly planar, its 3-D depth range is very narrow. Therefore, we use the location of vascular bifurcations and a plane+parallax approach to provide a robust estimation of the epipolar geometry. Matching is then performed using a mutual information algorithm for accurate estimation of the disparity maps. To validate our results, in the absence of camera calibration, we compared the results with measurements from the current clinical gold standard, optical coherence tomography (OCT).