The spliceosome is a dynamic macromolecular machine that catalyzes the excision of introns from pre-mRNA. The megadalton-sized spliceosome is composed of four small nuclear RNPs and additional pre-mRNA splicing factors. The formation of an active spliceosome involves a series of regulated steps that requires the assembly and disassembly of large multiprotein/RNA complexes. The dynamic nature of the pre-mRNA splicing reaction has hampered progress in analyzing the structure of spliceosomal complexes. We have used cryo-electron microscopy to produce a 29-A density map of a stable 37S spliceosomal complex from the genetically tractable fission yeast, Schizosaccharomyces pombe. Containing the U2, U5, and U6 snRNAs, pre-mRNA splicing intermediates, U2 and U5 snRNP proteins, the Nineteen Complex (NTC), and second-step splicing factors, this complex closely resembles in vitro purified mammalian C complex. The density map reveals an asymmetric particle, approximately 30 x 20 x 18 nm in size, which is composed of distinct domains that contact each other at the center of the complex.