Hypoxia-inducible factor-1 (HIF-1) is a major transcription factor sensitive to oxygen levels, which responds to stress factors under both hypoxic and nonhypoxic conditions. UV irradiation being a common stressor of skin, we looked at the effect of UVB on HIF-1alpha expression in keratinocytes. We found that UVB induces a biphasic HIF-1alpha variation through reactive oxygen species (ROS) generation. Whereas rapid production of cytoplasmic ROS down-regulates HIF-1alpha expression, delayed mitochondrial ROS generation results in its up-regulation. Indeed, activation of p38 MAPK and JNK1 mediated by mitochondrial ROS were required for HIF-1alpha phosphorylation and accumulation after UVB irradiation. Our experiments also revealed a key role of HIF-1alpha in mediating UVB-induced apoptosis. We conclude that the broad impact of the HIF-1 transcription factor on gene expression could make it a key regulator of UV-responsive genes and photocarcinogenesis.