Valve lesions in degenerative calcific aortic stenosis (CAS), a disorder affecting 3% of those older than 75 years, are infiltrated by T lymphocytes. We sought to determine whether the alphabeta TCR repertoire of these valve-infiltrating lymphocytes exhibited features either of a polyclonal nonselective response to inflammation or contained expanded clones suggesting a more specific immune process. TCR beta-chain CDR3-length distribution analysis using PCR primers specific for 23 Vbeta families performed in eight individuals with CAS affecting tri- or bileaflet aortic valves revealed considerable oligoclonal T cell expansion. In five cases, beta-chain nucleotide sequencing in five selected Vbeta families showed that an average of 92% of the valve-infiltrating T cell repertoire consisted of expanded T cell clones, differing markedly in composition from the relatively more polyclonal peripheral CD8 or CD4 T cell subsets found even in this elderly population. Twenty-four of the valve-infiltrating T cell clones also had the same clone identified in blood, some of which were highly expanded. Interestingly, 22 of these 24 shared clones were CD8 in lineage (p = 1.5 x 10(-12)), suggesting a possible relationship to the expanded CD8(+)CD28(-) T cell clones frequently present in the elderly. Additionally, the sequences of several TCR beta-chain CDR3 regions were homologous to TCR beta-chains identified previously in allograft arteriosclerosis. We infer that these findings are inconsistent with a nonselective secondary response of T cells to inflammation and instead suggest that clonally expanded alphabeta T cells are implicated in mediating a component of the valvular injury responsible for CAS.