The aim of this study was to investigate the effects of self-reinnervation of the medial (MG) and lateral gastrocnemius (LG) muscles on joint kinematics of the whole hindlimb during overground walking on surfaces of varying slope in the cat. Hindlimb kinematics were assessed (1) with little or no activity in MG and LG (short-term effects of self-reinnervation), and (2) after motor function of these muscles was presumably recovered but their proprioceptive feedback permanently disrupted (long-term effects of self-reinnervation). The stance phase was examined in three walking conditions: downslope (-50%, i.e. -26.6 degrees ), level (0%) and upslope (+50%, +26.6 degrees ). Measurements were performed prior to and at consecutive time points (between 1 and 57 weeks) after transecting and immediately suturing MG and LG nerves. It was found that MG-LG self-reinnervation did not significantly change hip height and hindlimb orientation in any of the three walking conditions. Substantial short-term effects were observed in the ankle joint (e.g., increased flexion in early stance) as well as in metatarsophalangeal and knee joints, leading to altered interjoint coordination. Hindlimb kinematics in level and upslope walking progressed back towards baseline within 14-19 weeks. Thus in these two conditions the cats were walking without any detectable kinematic deficits, despite the absence of length feedback from two major ankle extensors. This was verified in a decerebrate preparation for four of the five cats. In contrast, ankle joint kinematics as well as interjoint coordination in downslope walking gradually progressed towards, but never reached their baseline patterns. The short-term effects can be explained by both mechanical and neural factors that are affected by the functional elimination of MG and LG. Permanent changes in kinematics during downslope walking indicate the importance of proprioceptive feedback from the MG and LG muscles in regulating locomotor activity of ankle extensors. Full recovery of hindlimb kinematics during level and upslope walking suggests that the proprioceptive loss is compensated by other sensory sources (e.g. cutaneous receptors) or altered central drive.