Pathogenic mutations in FGFR2 and TWIST genes are detected in the majority of individuals with Crouzon, Pfeiffer, Apert, and Saethre-Chotzen syndromes. In contrast, mutations have been identified rarely in cases of nonsyndromic, single suture craniosynostosis. Recently, two studies confirming somatic mosaicism with local expression of an FGFR mutation have been reported. This study investigates whether somatic mosaicism could account for nonsyndromic, single suture craniosynostosis. Eight individuals with single suture craniosynostosis who were negative for known mutations in FGFR1-3 and TWIST after screening in their leucocyte DNA were tested for the presence of pathogenic mutations in suture cell-derived DNA. Five had sagittal synostosis, two had metopic synostosis, and the other unicoronal synostosis. Osteoprogenitor cells from surgically excised fusing sutures and an adjacent open suture were cultured. DNA from the cultured cells grown to passage 3 was then examined for underlying FGFR and TWIST mutations. No mutations within the exons of the FGFR or TWIST genes studied were identified in any suture cells. This study found no evidence to support the notion that mosaicism for FGFR or TWIST mutations, normally associated with syndromal forms of craniosynostosis, occur in single suture craniosynostosis. Thus, any underlying genetic defects must occur in regions outside those normally implicated in syndromal craniosynostosis, or this disorder could arise as a consequence of some other epigenetic modification.