Cholesterol-dependent cytolysins (CDCs) represent a large family of conserved pore-forming toxins produced by several Gram-positive bacteria such as Listeria monocytogenes, Streptococcus pyrogenes and Bacillus anthracis. These toxins trigger a broad range of cellular responses that greatly influence pathogenesis. Using mast cells, we demonstrate that listeriolysin O (LLO), a prototype of CDCs produced by L. monocytogenes, triggers cellular responses such as degranulation and cytokine synthesis in a Ca(2+)-dependent manner. Ca(2+) signalling by LLO is due to Ca(2+) influx from extracellular milieu and release of from intracellular stores. We show that LLO-induced release of Ca(2+) from intracellular stores occurs via at least two mechanisms: (i) activation of intracellular Ca(2+) channels and (ii) a Ca(2+) channels independent mechanism. The former involves PLC-IP(3)R operated Ca(2+) channels activated via G-proteins and protein tyrosine kinases. For the latter, we propose a novel mechanism of intracellular Ca(2+) release involving injury of intracellular Ca(2+) stores such as the endoplasmic reticulum. In addition to Ca(2+) signalling, the discovery that LLO causes damage to an intracellular organelle provides a new perspective in our understanding of how CDCs affect target cells during infection by the respective bacterial pathogens.