A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.