Deletion of 11q22-q23 is associated with an aggressive course of B-cell chronic lymphocytic leukaemia (B-CLL). Since only in a subset of these cases biallelic inactivation of ATM was observed, we sought to identify other disease-associated genes within 11q22-q23 by analysing NPAT (cell-cycle regulation), CUL5 (ubiquitin-dependent apoptosis regulation) and PPP2R1B (component of the cell-cycle and apoptosis regulating PP2A) for point mutations and their expression in B-CLL by single-strand conformation polymorphism/sequence analysis of the transcripts and real-time polymerase chain reaction. Though none of the genes were affected by deleterious mutations, we observed a significant down-regulation of NPAT in B-CLL versus CD19+ B cells and of CUL5 in 11q deletion versus non-deletion B-CLL samples and measured reduced PPP2R1B transcript levels in a subset of B-CLL cases. Alternative splicing of PPP2R1B transcripts (skipping of exons 2/3, 3, 9) was associated with a reduced activity of protein phosphatase 2A. Together, these results implicate deregulation of the cell-cycle and apoptosis regulators NPAT, CUL5 and PPP2R1B and a role for these genes in the pathogenesis of B-CLL.