The development of perimicrovillar membranes (PMM) from midgut cells of starved and fed Dysdercus peruvianus was studied by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and assays for specific enzymatic markers of the perimicrovillar membranes (alpha-glucosidase), perimicrovillar space (aminopeptidase) and microvillar membranes (beta-glucosidase). High activities of these enzymes were observed 6h post-feeding and significant production of membranes was observed at 30 h post-feeding. In the gut cells of starved insects, the rough endoplasmic reticulum was organized in concentric bundles, with a greater number of mitochondria in the cellular apex. The presence of electron dense double-membrane vesicles and the production of PMM were not observed in this condition. Thirty hours post-feeding, a disorganization of the rough endoplasmic reticulum was observed, and it was possible to see double-membrane vesicles close to the cell apex. The membrane system formation was evident with a significant development of PMM in the midgut lumen. The luminal surface of the midgut during starvation and up to 48 h post-feeding was monitored using SEM. It was demonstrated that in the starved condition, the PMM was virtually absent from gut cells, except at the base of the microvilli. At 6h post-feeding, the microvilli were already completely covered with PMM, but with a maximum of PMM formation seen at 30 h post-feeding. Signals of PMM degradation were observed 48 h after pulse feeding.