Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the regulation of plasma homocysteine levels. MTHFR deficiency, an autosomal recessive disorder, results in homocystinuria and hypomethioninaemia and presents with highly variable symptoms affecting many organs but predominantly the central nervous system. The common polymorphism of the MTHFR gene, c.677C>T, a known risk factor for elevated plasma homocysteine levels, occurs frequently in the caucasian population. In this study we investigated three subjects with moderate hyperhomocysteinaemia (total plasma homocysteine 72 micromol/L in case 1 and 90 micromol/L in case 3, total non-protein-bound homocysteine 144-186 micromol/L in case 2) but different clinical presentation with no symptoms in case 1, muscle weakness at 17 years of age in case 2, and syncopes and cerebral convulsions at 18 years of age in case 3. Each subject was compound heterozygous for the c.677C>T polymorphism and a novel mutation of the MTHFR gene (case 1: c.883G>A [p.D291N]; case 2: c.1552_c.1553delGA [p.E514fsX536]; case 3: c.616C>T [p.P202S]). Moderately decreased fibroblast MTHFR activity was associated with severely reduced affinity for NADPH and increased sensitivity to inhibition by S-adenosylmethionine (AdoMet) in case 2, and with mild FAD responsiveness in case 3. In case 1, fibroblast MTHFR activity was normal but the sensitivity to inhibition by AdoMet was slightly reduced. This study indicates that the sequence alteration c.677C>T combined with severe MTHFR mutations in compound heterozygous state may lead to moderate biochemical and clinical abnormalities exceeding those attributed to the c.677TT genotype and might require in addition to folate substitution further therapy to normalize homocysteine levels.