The frequency of extending m6G.C or m6G.T pairs, when the 3' and 5' flanking neighbors of m6G are either cytosines or thymines, was investigated using primed 25-base-long oligonucleotides and the Klenow fragment of Escherichia coli DNA polymerase I (Kf). The efficiency, Vmax/Km, of extension to the following normal base pair was up to 40-fold greater than for the formation of the m6G.T or m6G.C pair. The frequencies of inserting either dCMP or dTMP opposite these m6G bases did not appear to be different in the two sequences, C-m6G-C and T-m6G-T, but extension was favored in the C-m6G-C sequence. The m6G.T pair extended to a C.G pair most efficiently, indicating that it was not a strong block to continued replication past the template lesion. Thus, m6G.T flanked by cytosines replicates more readily than when flanked by thymines, increasing G----A transitions. These data lend further support to the importance of sequence context in mutagenesis.