Vascular Endothelial Growth Factor (VEGF) and its transcriptional regulator Hypoxia-inducible Factor 1 (HIF-1) play an important role in the process of angiogenesis in many types of cancer, including ovarian cancer. We have examined whether the DNA-damaging drugs cisplatin and doxorubicin and the microtubule inhibitors docetaxel and paclitaxel can affect VEGF expression and HIF-1 activity in three human ovarian cancer cell lines. We demonstrate that cisplatin and doxorubicin abolish hypoxia-induced VEGF mRNA expression in all cell lines, while basal VEGF mRNA expression was also downregulated. Transient transfection with a HIF-1-responsive luciferase construct indicated that cisplatin and doxorubicin inhibited hypoxic activation of HIF-1. Cisplatin repressed HIF-1alpha protein expression in all cell lines. Stimulation of HIF-1alpha protein degradation by cisplatin was observed in the only cell line expressing wild-type p53. Cisplatin also inhibited the synthesis of HIF-1alpha protein for which p53 was dispensable. Interestingly, cisplatin strongly reduced the protein levels of the HIF-1 coactivators p300 and CREB-binding protein (CBP) under hypoxia in all cell lines. Although doxorubicin inhibited hypoxic activation of HIF-1, this drug had no significant effect on the expression levels of HIF-1alpha and hypoxic expression of p300 and CBP was only weakly reduced. Docetaxel and paclitaxel did neither influence VEGF expression nor hypoxia-induced HIF-1 activity. In total, our findings indicate that cisplatin and doxorubicin can repress hypoxic induction of VEGF expression by inhibiting HIF-1 through different mechanisms. This knowledge may be useful for future treatment schedules including agents that target the HIF-1 signalling pathway.