We describe the cytogenetic diagnosis using BAC- and oligonucleotide microarrays of a 16-year-old Laotian-American female, who first presented at 2 1/2 years of age with microcephaly, developmental retardation, and skeletal abnormalities of the upper limb including mild syndactyly of the second and third and the third and fourth fingers, short middle phalanges and clinodactyly of the fifth digit at the distal interphalangel joint on both hands, and symphalangism of the metacarpal-phalangeal joints of the second and fifth digits bilaterally. Her lower limbs displayed symphalangism of the metatarsal-phalangeal joint of the second, third, and fourth digits on both feet, with fusion of the middle and distal phalanges of the second and fifth digits and hallux valgus bilaterally. G-banded chromosomal study at age 4 was normal. However, comparative genomic hybridization at age 15 with the Spectral Genomics 1 Mb Hu BAC array platform indicated a microdeletion involving two BAC clones, RP11-451F14 --> RP11-12N7 at 2q31.1. The maximal deletion on initial analysis comprised the HOXD cluster, which is implicated in limb development. Fluorescence in situ hybridization (FISH) using the RP11-451F14 probe confirmed the deletion. Both parents were negative for the deletion. Additional FISH using BAC RP11-387A1, covering the HOXD cluster, limited the maximal deletion to approximately 2.518 Mb, and excluded involvement of the HOXD cluster. The Agilent 44K and 244K platforms demonstrated a deletion of approximately 2,011,000 bp, which did not include the HOXD cluster. The malformations in our patient may be caused by deletion of a regulatory element far upstream of the HOXD cluster.