Rationale, aims and objectives: Type 2 diabetes represents a condition significantly associated with increased cardiovascular mortality. The aims of the study are: (i) to estimate the cumulative incidence function for cause-specific mortality using Cox and Aalen model; (ii) to describe how the prediction of cardiovascular or other causes mortality changes for patients with different pattern of covariates; (iii) to show if different statistical methods may give different results.
Methods: Cox and Aalen additive regression model through the Markov chain approach, are used to estimate the cause-specific hazard for cardiovascular or other causes mortality in a cohort of 2865 type 2 diabetic patients without insulin treatment. The models are compared in the estimation of the risk of death for patients of different severity.
Results: For younger patients with a better covariates profile, the Cumulative Incidence Function estimated by Cox and Aalen model was almost the same; for patients with the worst covariates profile, models gave different results: at the end of follow-up cardiovascular mortality rate estimated by Cox and Aalen model was 0.26 [95% confidence interval (CI) = 0.21-0.31] and 0.14 (95% CI = 0.09-0.18).
Conclusions: Standard Cox and Aalen model capture the risk process for patients equally well with average profiles of co-morbidities. The Aalen model, in addition, is shown to be better at identifying cause-specific risk of death for patients with more severe clinical profiles. This result is relevant in the development of analytic tools for research and resource management within diabetes care.