RyhB is a small RNA (sRNA) that downregulates about 20 genes involved in iron metabolism. It is expressed under low iron conditions and pairs with specific mRNAs to trigger their rapid degradation by the RNA degradosome. In contrast to this, another study has suggested that RyhB also activates several genes by increasing their mRNA level. Among these activated genes is shiA, which encodes a permease of shikimate, an aromatic compound participating in the biosynthesis of siderophores. Here, we demonstrate in vivo and in vitro that RyhB directly pairs at the 5'-untranslated region (5'-UTR) of the shiA mRNA to disrupt an intrinsic inhibitory structure that sequesters the ribosome-binding site (Shine-Dalgarno) and the first translation codon. This is the first demonstration of direct gene activation by RyhB, which has been exclusively described in degradation of mRNAs. Our physiological results indicate that the transported compound of the ShiA permease, shikimate, is important under conditions of RyhB expression, that is, iron starvation. This is demonstrated by growth assays in which shikimate or the siderophore enterochelin correct the growth defect observed for a ryhB mutant in iron-limited media.