We used oligonucleotide microarrays with probe sets to 22,283 genes to analyze the gene expression profile of lung adenocarcinoma. Cancerous and noncancerous tissue samples were obtained from 23 patients with stage I or II lung cancer; 18 tissue pairs and 5 cancerous tissues. A list of 2065 genes that differentiate between cancerous and noncancerous tissues was generated using Winsorized paired t-tests. We analyzed CDK5RAP3 and CCNB2, which are involved in cell cycle progression, and RAGE. The first 2 of these 3 genes proved to be overexpressed in tumor tissue, whereas the RAGE gene was suppressed in tumor tissue. When CDK5RAP3 and CCNB2 were examined in individual patients we found that in cases where one of these genes was only slightly overexpressed the other was highly overexpressed. The combined expression of the 2 cell cycle genes was found to be statistically significant for differentiating between cancerous and noncancerous tissues. Inclusion of the data for the RAGE gene made the differentiation more powerful. The gene expression ratio gave a clear result: when CDK5RAP3 was expressed more than RAGE, the tissue was carcinomatous, and vice versa. We therefore conclude that these 3 genes may be used as a very reliable biomarker of lung adenocarcinoma.