Intersectin enhances huntingtin aggregation and neurodegeneration through activation of c-Jun-NH2-terminal kinase

Hum Mol Genet. 2007 Aug 1;16(15):1862-71. doi: 10.1093/hmg/ddm134. Epub 2007 Jun 5.

Abstract

Huntingon's disease is a progressive neurodegenerative disease arising from expansion of a polyglutamine (polyQ) tract in the protein huntingtin (Htt) resulting in aggregation of mutant Htt into nuclear and/or cytosolic inclusions in neurons. Mutant Htt affects multiple processes including protein degradation, transcription, signal transduction, fast axonal transport and endocytosis [reviewed in Ross, C.A. and Poirier, M.A. (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell. Biol., 6, 891-898]. Here, we report that the endocytic and signal transduction scaffold intersectin (ITSN) increased aggregate formation by mutant Htt through activation of the c-Jun-NH(2)-terminal kinase (JNK)-MAPK pathway. Conversely, silencing ITSN or inhibiting JNK attenuated aggregate formation. Using a Drosophila model for polyQ repeat disease, we observed that ITSN enhanced polyQ-mediated neurotoxicity. A reciprocal relationship was observed between ITSN and Htt. While ITSN enhanced Htt aggregation and toxicity, Htt, in turn, inhibited the cooperativity between ITSN and the epidermal growth factor receptor signal transduction pathway. Finally, we observed that ITSN overexpression enhanced aggregation of polyQ-expanded androgen receptor (AR) as well as wild-type versions of both Htt and AR suggesting a broader involvement of ITSN in neurodegenerative diseases through destabilization of polyQ-containing proteins.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Vesicular Transport / genetics
  • Adaptor Proteins, Vesicular Transport / metabolism*
  • Animals
  • COS Cells
  • Cells, Cultured
  • Chlorocebus aethiops
  • Drosophila / genetics
  • Drosophila / metabolism
  • Enzyme Activation
  • Humans
  • Huntingtin Protein
  • Huntington Disease / enzymology
  • Huntington Disease / metabolism*
  • JNK Mitogen-Activated Protein Kinases / metabolism*
  • Mice
  • Microscopy, Confocal
  • Mutation
  • Nerve Tissue Proteins / analysis*
  • Nerve Tissue Proteins / metabolism
  • Neurons / metabolism
  • Nuclear Proteins / analysis*
  • Nuclear Proteins / metabolism
  • Peptides / metabolism
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Signal Transduction

Substances

  • Adaptor Proteins, Vesicular Transport
  • HTT protein, human
  • Huntingtin Protein
  • Nerve Tissue Proteins
  • Nuclear Proteins
  • Peptides
  • Recombinant Fusion Proteins
  • intersectin 1
  • polyglutamine
  • JNK Mitogen-Activated Protein Kinases