In polarized epithelial cells such as those that line the inner ear, kidney and gut, myosin VI has been localized to the intermicrovillar domains where it is proposed to regulate clathrin-dependent endocytosis; however, a direct role for myosin VI in apical endocytosis has not been shown. We examined the apical membrane distribution and endocytosis of cystic fibrosis transmembrane conductance regulator (CFTR) in myosin VI-deficient Snell's Waltzer Myo6((sv/sv)) mice. Confocal microscopy and cell-surface biotinylation confirmed that surface levels of CFTR in the intestine of Myo6((sv/sv)) mice were markedly higher, and CFTR internalization from the apical plasma membrane was reduced compared with heterozygous controls. Consistent with a defect in CFTR endocytosis and accumulation at the cell surface, exaggerated CFTR-mediated fluid secretion was observed in Myo6((sv/sv)) mice following treatment of isolated jejunum with the cyclic GMP-activated heat stable enterotoxin. These data establish that myosin VI modulates apical endocytosis and may be an important physiological modulator of CFTR function and CFTR-associated secretory diarrhea in the gut.