Disaccharides are well-known reagents to protect biostructures like proteins and phospholipid-based liposomes during freezing and drying. We have investigated the ability of the two disaccharides trehalose and sucrose to stabilize a novel, non-phospholipid-based liposomal adjuvant composed of the cationic dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) upon freeze-drying. The liposomes were freeze-dried using a human dose concentration containing 2.5 mg/ml DDA and 0.5 mg/ml TDB with varying concentrations of the two sugars. The influence on particle size upon rehydration was investigated using photon correlation spectroscopy (PCS) and the gel to fluid phase transition was examined by differential scanning calorimetry (DSC). Data revealed that concentrations above 211 mM trehalose protected and preserved DDA/TDB during freeze-drying, and the liposomes were readily rehydrated. Sucrose was less efficient as a stabilizer and had to be used in concentrations above 396 mM in order to obtain the same effect. Immunization of mice with the tuberculosis vaccine candidate Ag85B-ESAT-6 in combination with the trehalose stabilized adjuvant showed that freeze-dried DDA/TDB liposomes retained their ability to stimulate both a strong cell-mediated immune response and an antibody response. These findings show that trehalose at isotonic concentrations protects cationic DDA/TDB-liposomes during freeze-drying. Since this is not the case for liposomes based on DDA solely, we suggest that the protection is facilitated via direct interaction with the headgroup of TDB and a kosmotropic effect, whereas direct interaction with DDA plays a minor role.