Neural stem cells (NSCs) hold great promise for glioma therapy due to their inherent tumor-tropic properties, enabling them to deliver therapeutic agents directly to invasive tumor sites. In the present study, we visualized and quantitatively analyzed the spatial distribution of tumor-tropic NSCs in a mouse model of orthotopic glioma in order to predict the therapeutic efficacy of a representative NSC-based glioma therapy. U251.eGFP human glioma was established in the brain of athymic mice, followed by stereotactic injection of CM-DiI-labeled human NSCs posterior-lateral to the tumor site. Confocal microscopy, three-dimensional modeling and mathematical algorithms were used to visualize and characterize the spatial distribution of NSCs throughout the tumor. The pattern of NSC distribution showed a gradient with higher densities toward the centroid of the tumor mass. We estimate that NSC-mediated therapy would eradicate 70-90% of the primary tumor mass and the majority of invasive tumor foci. Our method may serve as a model for optimizing the efficacy of NSC-based glioma therapy.