The localization of protein kinase Cdelta in different subcellular sites affects its proapoptotic and antiapoptotic functions and the activation of distinct downstream signaling pathways

Mol Cancer Res. 2007 Jun;5(6):627-39. doi: 10.1158/1541-7786.MCR-06-0255.

Abstract

Protein kinase Cdelta (PKCdelta) regulates cell apoptosis and survival in diverse cellular systems. PKCdelta translocates to different subcellular sites in response to apoptotic stimuli; however, the role of its subcellular localization in its proapoptotic and antiapoptotic functions is just beginning to be understood. Here, we used a PKCdelta constitutively active mutant targeted to the cytosol, nucleus, mitochondria, and endoplasmic reticulum (ER) and examined whether the subcellular localization of PKCdelta affects its apoptotic and survival functions. PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc induced cell apoptosis, whereas no apoptosis was observed with the PKCdelta-ER. PKCdelta-Cyto and PKCdelta-Mito underwent cleavage, whereas no cleavage was observed in the PKCdelta-Nuc and PKCdelta-ER. Similarly, caspase-3 activity was increased in cells overexpressing PKCdelta-Cyto and PKCdelta-Mito. In contrast to the apoptotic effects of the PKCdelta-Cyto, PKCdelta-Mito, and PKCdelta-Nuc, the PKCdelta-ER protected the cells from tumor necrosis factor-related apoptosis-inducing ligand-induced and etoposide-induced apoptosis. Moreover, overexpression of a PKCdelta kinase-dead mutant targeted to the ER abrogated the protective effect of the endogenous PKCdelta and increased tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. The localization of PKCdelta differentially affected the activation of downstream signaling pathways. PKCdelta-Cyto increased the phosphorylation of p38 and decreased the phosphorylation of AKT and the expression of X-linked inhibitor of apoptosis protein, whereas PKCdelta-Nuc increased c-Jun NH(2)-terminal kinase phosphorylation. Moreover, p38 phosphorylation and the decrease in X-linked inhibitor of apoptosis protein expression played a role in the apoptotic effect of PKCdelta-Cyto, whereas c-Jun NH(2)-terminal kinase activation mediated the apoptotic effect of PKCdelta-Nuc. Our results indicate that the subcellular localization of PKCdelta plays important roles in its proapoptotic and antiapoptotic functions and in the activation of downstream signaling pathways.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis*
  • Brain Neoplasms / metabolism
  • Cell Line, Tumor
  • Cell Nucleus / metabolism
  • Cytoplasm / metabolism
  • Endoplasmic Reticulum / metabolism
  • Glioma / metabolism
  • HeLa Cells
  • Humans
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Mitochondria / metabolism
  • Phosphorylation
  • Protein Kinase C-delta / biosynthesis*
  • Signal Transduction
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Protein Kinase C-delta
  • JNK Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases