Colloids with high-definition surface structures

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11173-8. doi: 10.1073/pnas.0702749104. Epub 2007 Jun 25.

Abstract

Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of approximately 10(7) to 10(8) particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Coated Materials, Biocompatible / chemical synthesis*
  • Colloids / chemistry*
  • Polymers / chemical synthesis*
  • Surface Properties

Substances

  • Coated Materials, Biocompatible
  • Colloids
  • Polymers