Some behavioral symptoms and neuropathological features of schizophrenia, like alterations of local GABAergic interneurons, could be emulated in an animal model of psychosis based on prolonged low-dose exposure to N-methyl-D-aspartate (NMDA) receptor antagonists, e.g. MK-801. Employing this model, we examined distinct subpopulations of GABAergic interneurons within the hippocampus and prefrontal cortex. Compared to saline control, animals receiving MK-801 exhibited a decreased density of hippocampal parvalbumin-positive interneurons. A co-administration of the antipsychotic drug haloperidol ameliorated this effect of MK-801 on PV(+) interneurons in the hippocampus, but led to a marked reduction of PV immunoreactivity in the prefrontal cortex, when comparing with saline, MK-801 or haloperidol treatment alone. Neither calretinin immunoreactivity nor nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining, representing neuronal nitric oxide synthase activity mostly detectable in interneurons, was altered by either treatment. With special reference to the hippocampus, these data show that a prolonged application of low-dose NMDA receptor antagonist could, in part, mimic some neuropathologic findings in human schizophrenia, thus strengthening the idea that (sub-) chronic NMDA receptor antagonism in animals is a viable approach in mimicking aspects of schizophrenia. Moreover, this study provides further evidence for regional differences in the response of GABAergic interneurons to NMDA receptor antagonism and antipsychotic treatment.