Objective: Fluorescence in situ hybridization (FISH) analysis has become a valuable adjunct in cytogenetics, providing a rapid screen for common chromosome abnormalities that is particularly helpful in prenatal diagnosis. FISH analysis using standard microscopy is expensive and labor intensive, requiring both a high skill level and subjective signal interpretation. A reliable fully automated system for FISH analysis could improve laboratory efficiency and potentially reduce errors and costs.
Methods: The efficacy of an automated system was compared to standard manual FISH analysis. Two sets of slides were generated from each of 152 amniotic fluid samples. Following hybridization with a standard panel of five chromosome FISH probes, one set of slides was evaluated using manual microscopy. The other set was evaluated using an automated microscopy system.
Results: A diagnostic outcome was obtained for all 152 samples using manual microscopy and for 146 of 152 (96%) samples using automated microscopy. Three cases of aneuploidy were detected. For those samples for which a diagnostic outcome was determined by both manual and automated microscopy, 100% concordance was observed. All FISH analysis results were confirmed by karyotype.
Conclusion: These data suggest that an automated microscopy system is capable of providing accurate and rapid enumeration of FISH signals in amniocytes.