The adsorption of tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)(3)]2+) complex cation into modified mesoporous silicas was investigated. In order to immobilize [Ru(bpy)(3)]2+, the mesopore surface was modified with sulfonic acid groups by the reactions between MCM-41 and phenethyl(dichloro)methylsilane and the subsequent sulfonation of the attached phenethyl groups with chlorosulfonic acid. The modified mesoporous silicas effectively adsorbed [Ru(bpy)(3)]2+ from ethanol solution. It was thought that the effective adsorption was the cause of the cooperative effects of the electrostatic interactions between [Ru(bpy)(3)]2+ cation and sulfonic acid group and the interactions between the phenyl rings on the mesopore surface and the bipyridine rings of the complex. The variation of the position and the intensity of the luminescence of [Ru(bpy)(3)]2+ suggested that the average distance between the adjacent [Ru(bpy)(3)]2+ changed with the loading amounts.