Background and purpose: We report a preclinical study of a new endoluminal device for aneurysm occlusion to test the hypothesis that the device, even without use of intrasaccular coil placement, could occlude saccular aneurysms without causing substantial parent artery compromise or compromise of adjacent, small branch arteries.
Methods: The Pipeline Neuroendovascular Device (Pipeline NED; Chestnut Medical Technologies, Inc) is a braided, tubular, bimetallic endoluminal implant aimed at occlusion of saccular aneurysms through flow disruption along the aneurysm neck. The device was implanted across the necks of 17 elastase-induced aneurysms in the New Zealand white rabbit model and followed for 1 month (n=6), 3 months (n=5), and 6 months (n=6). In each subject, a second device was implanted in the abdominal aorta to cover the origins of lumbar arteries. Aneurysm occlusion rates by angiography (grade 1, complete occlusion; grade 2, near-complete occlusion; and grade 3, incomplete occlusion) were documented. Percent area stenosis of the parent arteries was calculated. Presence of distal emboli in the downstream vessels in the parent artery and branch artery stenosis or occlusion was noted.
Results: Grades 1, 2, and 3 occlusion rates were noted in 9 (53%), 6 (35%), and 2 (12%) of 17 aneurysms, respectively, indicating an 88% rate of complete or near complete occlusion. No cases of branch artery occlusion or distal emboli in the downstream vessels of the parent artery, specifically the subclavian artery, were seen. Parent artery compromise from neointimal hyperplasia was minimal in most cases.
Conclusions: The Pipeline NED is a trackable, bio- and hemocompatible device able to occlude saccular aneurysms with preservation of the parent artery and small, adjacent branch vessels.