Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth

Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11889-94. doi: 10.1073/pnas.0704662104. Epub 2007 Jul 9.

Abstract

We have developed a microfluidic device that allows the isolation and genome amplification of individual microbial cells, thereby enabling organism-level genomic analysis of complex microbial ecosystems without the need for culture. This device was used to perform a directed survey of the human subgingival crevice and to isolate bacteria having rod-like morphology. Several isolated microbes had a 16S rRNA sequence that placed them in candidate phylum TM7, which has no cultivated or sequenced members. Genome amplification from individual TM7 cells allowed us to sequence and assemble >1,000 genes, providing insight into the physiology of members of this phylum. This approach enables single-cell genetic analysis of any uncultivated minority member of a microbial community.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Bacteria / cytology
  • Bacteria / genetics*
  • Bacteria / isolation & purification*
  • Chromosome Mapping
  • Genes, Bacterial
  • Humans
  • Male
  • Microfluidics
  • Mouth / microbiology*
  • Phylogeny
  • Sequence Homology, Nucleic Acid