Background: Genes that are overexpressed in multidrug-resistant neuroblastomas relative to drug-sensitive neuroblastomas may provide targets for modulating drug resistance.
Methods: We used microarrays to compare the gene expression profile of two drug-sensitive neuroblastoma cell lines with that of three multidrug-resistant neuroblastoma cell lines. RNA expression of selected overexpressed genes was quantified in 17 neuroblastoma cell lines by reverse transcription-polymerase chain reaction (RT-PCR). Small-interfering RNAs (siRNAs) were used for silencing gene expression. Cytotoxicity of melphalan, carboplatin, etoposide, and vincristine and cytotoxic synergy (expressed as combination index calculated by CalcuSyn software, where combination index < 1 indicates synergy and > 1 indicates antagonism) were measured in cell lines with a fluorescence-based assay of cell viability. All statistical tests were two-sided.
Results: A total of 94 genes were overexpressed in the multidrug-resistant cell lines relative to the drug-sensitive cell lines. Nine genes were selected for RT-PCR analysis, of which four displayed higher mRNA expression in the multidrug-resistant lines than in the drug-sensitive lines: histone deacetylase 1 (HDAC1; 2.3-fold difference, 95% confidence interval [CI] = 1.0-fold to 3.5-fold, P = .025), nuclear transport factor 2-like export factor (4.2-fold difference, 95% CI = 1.7-fold to 7.6-fold, P = .0018), heat shock 27-kDa protein 1 (2.5-fold difference, 95% CI = 1.0-fold to 87.7-fold, P = .028), and TAF12 RNA polymerase II, TATA box-binding protein-associated factor, 20 kDa (2.2-fold, 95% CI = 0.9-fold to 6.0-fold, P = .051). siRNA knockdown of HDAC1 gene expression sensitized CHLA-136 neuroblastoma cells to etoposide up to fivefold relative to the parental cell line or scrambled siRNA-transfected cells (P<.001). Cytotoxicity of the histone deacetylase inhibitor depsipeptide was tested in combination with melphalan, carboplatin, etoposide, or vincristine in five multidrug-resistant neuroblastoma cell lines, and synergistic cytotoxicity was demonstrated at a 90% cell kill of treated cells (combination index < 0.8) in all cell lines.
Conclusion: High HDAC1 mRNA expression was associated with multidrug resistance in neuroblastoma cell lines, and inhibition of HDAC1 expression or activity enhanced the cytotoxicity of chemotherapeutic drugs in multidrug-resistant neuroblastoma cell lines. Thus, HDAC1 is a potential therapeutic target in multidrug-resistant neuroblastoma.