The influence of methyl or phenyl substitution in beta-position of dioxygenated terthiophene and diphenylthiophene on the optical properties is investigated by first-principles calculations. We compare the approximated singles and doubles coupled cluster (CC2) approach with time-dependent density functional theory methods. CC2 reproduces experimental excitation energies with an accuracy of 0.1 eV. We find that the different substituents modify the inter-ring torsional angle which in turn strongly influences the excitation energies. The steric contribution to the excitation energies have been separated from the total substituent effects.
(c) 2007 Wiley Periodicals, Inc.