While activation of alpha7 nicotinic receptors protects neurons from a variety of apoptotic insults in vitro, little is known about this neuroprotective action in vivo, especially under amyloidogenic conditions that mimic Alzheimer's disease. We therefore investigated the effects of 4OH-GTS-21, a selective partial agonist for these receptors, on septohippocampal cholinergic and GABAergic neuron survival following fimbria fornix (FFX) lesions in three strains of mice: C57BL/6J wild type mice; human presenilin-1 mutant M146L (PS1) transgenic mice; and mice expressing both mutant PS1 and Swedish mutant K670N/M671L amyloid precursor protein (APP). Initial studies to demonstrated that 4OH-GTS-21 is likely brain permeant based on its ability to improve passive avoidance and Morris water task behaviors in nucleus basalis-lesioned rats. In FFX-lesioned mice, twice per day i.p. injections of 1 mg/kg of 4OH-GTS-21 for 2 weeks promoted the survival and prevented the atrophy of septal cholinergic neurons. Septal parvalbumin-staining GABAergic neurons were not protected by this treatment, although they also express alpha7 nicotinic receptors, suggesting an indirect, nerve growth factor (NGF)-mediated mechanism. No protection of cholinergic neurons was observed in similarly treated PS1 or APP/PS1 transgenic mice. 4OH-GTS-21 treatment actually reduced cholinergic neuronal size in APP/PS1 mice. Hippocampal amyloid deposition was not affected by FFX lesions or treatment with this alpha7 nicotinic receptor agonist in APP/PS1 mice under these conditions. These results indicate that brain alpha7 nicotinic receptors are potential targets for protecting at-risk brain neurons in Alzheimer's disease, perhaps via their effects on NGF receptors; however, this protection may be sensitive under some conditions to environmental factors such as inhibitory amyloid-peptides.